Skip to content

pydantic_ai.models

Logic related to making requests to an LLM.

The aim here is to make a common interface for different LLMs, so that the rest of the code can be agnostic to the specific LLM being used.

KnownModelName module-attribute

KnownModelName = Literal[
    "anthropic:claude-3-7-sonnet-latest",
    "anthropic:claude-3-5-haiku-latest",
    "anthropic:claude-3-5-sonnet-latest",
    "anthropic:claude-3-opus-latest",
    "claude-3-7-sonnet-latest",
    "claude-3-5-haiku-latest",
    "bedrock:amazon.titan-tg1-large",
    "bedrock:amazon.titan-text-lite-v1",
    "bedrock:amazon.titan-text-express-v1",
    "bedrock:us.amazon.nova-pro-v1:0",
    "bedrock:us.amazon.nova-lite-v1:0",
    "bedrock:us.amazon.nova-micro-v1:0",
    "bedrock:anthropic.claude-3-5-sonnet-20241022-v2:0",
    "bedrock:us.anthropic.claude-3-5-sonnet-20241022-v2:0",
    "bedrock:anthropic.claude-3-5-haiku-20241022-v1:0",
    "bedrock:us.anthropic.claude-3-5-haiku-20241022-v1:0",
    "bedrock:anthropic.claude-instant-v1",
    "bedrock:anthropic.claude-v2:1",
    "bedrock:anthropic.claude-v2",
    "bedrock:anthropic.claude-3-sonnet-20240229-v1:0",
    "bedrock:us.anthropic.claude-3-sonnet-20240229-v1:0",
    "bedrock:anthropic.claude-3-haiku-20240307-v1:0",
    "bedrock:us.anthropic.claude-3-haiku-20240307-v1:0",
    "bedrock:anthropic.claude-3-opus-20240229-v1:0",
    "bedrock:us.anthropic.claude-3-opus-20240229-v1:0",
    "bedrock:anthropic.claude-3-5-sonnet-20240620-v1:0",
    "bedrock:us.anthropic.claude-3-5-sonnet-20240620-v1:0",
    "bedrock:anthropic.claude-3-7-sonnet-20250219-v1:0",
    "bedrock:us.anthropic.claude-3-7-sonnet-20250219-v1:0",
    "bedrock:cohere.command-text-v14",
    "bedrock:cohere.command-r-v1:0",
    "bedrock:cohere.command-r-plus-v1:0",
    "bedrock:cohere.command-light-text-v14",
    "bedrock:meta.llama3-8b-instruct-v1:0",
    "bedrock:meta.llama3-70b-instruct-v1:0",
    "bedrock:meta.llama3-1-8b-instruct-v1:0",
    "bedrock:us.meta.llama3-1-8b-instruct-v1:0",
    "bedrock:meta.llama3-1-70b-instruct-v1:0",
    "bedrock:us.meta.llama3-1-70b-instruct-v1:0",
    "bedrock:meta.llama3-1-405b-instruct-v1:0",
    "bedrock:us.meta.llama3-2-11b-instruct-v1:0",
    "bedrock:us.meta.llama3-2-90b-instruct-v1:0",
    "bedrock:us.meta.llama3-2-1b-instruct-v1:0",
    "bedrock:us.meta.llama3-2-3b-instruct-v1:0",
    "bedrock:us.meta.llama3-3-70b-instruct-v1:0",
    "bedrock:mistral.mistral-7b-instruct-v0:2",
    "bedrock:mistral.mixtral-8x7b-instruct-v0:1",
    "bedrock:mistral.mistral-large-2402-v1:0",
    "bedrock:mistral.mistral-large-2407-v1:0",
    "claude-3-5-sonnet-latest",
    "claude-3-opus-latest",
    "cohere:c4ai-aya-expanse-32b",
    "cohere:c4ai-aya-expanse-8b",
    "cohere:command",
    "cohere:command-light",
    "cohere:command-light-nightly",
    "cohere:command-nightly",
    "cohere:command-r",
    "cohere:command-r-03-2024",
    "cohere:command-r-08-2024",
    "cohere:command-r-plus",
    "cohere:command-r-plus-04-2024",
    "cohere:command-r-plus-08-2024",
    "cohere:command-r7b-12-2024",
    "deepseek:deepseek-chat",
    "deepseek:deepseek-reasoner",
    "google-gla:gemini-1.0-pro",
    "google-gla:gemini-1.5-flash",
    "google-gla:gemini-1.5-flash-8b",
    "google-gla:gemini-1.5-pro",
    "google-gla:gemini-2.0-flash-exp",
    "google-gla:gemini-2.0-flash-thinking-exp-01-21",
    "google-gla:gemini-exp-1206",
    "google-gla:gemini-2.0-flash",
    "google-gla:gemini-2.0-flash-lite-preview-02-05",
    "google-gla:gemini-2.0-pro-exp-02-05",
    "google-vertex:gemini-1.0-pro",
    "google-vertex:gemini-1.5-flash",
    "google-vertex:gemini-1.5-flash-8b",
    "google-vertex:gemini-1.5-pro",
    "google-vertex:gemini-2.0-flash-exp",
    "google-vertex:gemini-2.0-flash-thinking-exp-01-21",
    "google-vertex:gemini-exp-1206",
    "google-vertex:gemini-2.0-flash",
    "google-vertex:gemini-2.0-flash-lite-preview-02-05",
    "google-vertex:gemini-2.0-pro-exp-02-05",
    "gpt-3.5-turbo",
    "gpt-3.5-turbo-0125",
    "gpt-3.5-turbo-0301",
    "gpt-3.5-turbo-0613",
    "gpt-3.5-turbo-1106",
    "gpt-3.5-turbo-16k",
    "gpt-3.5-turbo-16k-0613",
    "gpt-4",
    "gpt-4-0125-preview",
    "gpt-4-0314",
    "gpt-4-0613",
    "gpt-4-1106-preview",
    "gpt-4-32k",
    "gpt-4-32k-0314",
    "gpt-4-32k-0613",
    "gpt-4-turbo",
    "gpt-4-turbo-2024-04-09",
    "gpt-4-turbo-preview",
    "gpt-4-vision-preview",
    "gpt-4.5-preview",
    "gpt-4.5-preview-2025-02-27",
    "gpt-4o",
    "gpt-4o-2024-05-13",
    "gpt-4o-2024-08-06",
    "gpt-4o-2024-11-20",
    "gpt-4o-audio-preview",
    "gpt-4o-audio-preview-2024-10-01",
    "gpt-4o-audio-preview-2024-12-17",
    "gpt-4o-mini",
    "gpt-4o-mini-2024-07-18",
    "gpt-4o-mini-audio-preview",
    "gpt-4o-mini-audio-preview-2024-12-17",
    "groq:gemma2-9b-it",
    "groq:llama-3.1-8b-instant",
    "groq:llama-3.2-11b-vision-preview",
    "groq:llama-3.2-1b-preview",
    "groq:llama-3.2-3b-preview",
    "groq:llama-3.2-90b-vision-preview",
    "groq:llama-3.3-70b-specdec",
    "groq:llama-3.3-70b-versatile",
    "groq:llama3-70b-8192",
    "groq:llama3-8b-8192",
    "groq:mixtral-8x7b-32768",
    "mistral:codestral-latest",
    "mistral:mistral-large-latest",
    "mistral:mistral-moderation-latest",
    "mistral:mistral-small-latest",
    "o1",
    "o1-2024-12-17",
    "o1-mini",
    "o1-mini-2024-09-12",
    "o1-preview",
    "o1-preview-2024-09-12",
    "o3-mini",
    "o3-mini-2025-01-31",
    "openai:chatgpt-4o-latest",
    "openai:gpt-3.5-turbo",
    "openai:gpt-3.5-turbo-0125",
    "openai:gpt-3.5-turbo-0301",
    "openai:gpt-3.5-turbo-0613",
    "openai:gpt-3.5-turbo-1106",
    "openai:gpt-3.5-turbo-16k",
    "openai:gpt-3.5-turbo-16k-0613",
    "openai:gpt-4",
    "openai:gpt-4-0125-preview",
    "openai:gpt-4-0314",
    "openai:gpt-4-0613",
    "openai:gpt-4-1106-preview",
    "openai:gpt-4-32k",
    "openai:gpt-4-32k-0314",
    "openai:gpt-4-32k-0613",
    "openai:gpt-4-turbo",
    "openai:gpt-4-turbo-2024-04-09",
    "openai:gpt-4-turbo-preview",
    "openai:gpt-4-vision-preview",
    "openai:gpt-4.5-preview",
    "openai:gpt-4.5-preview-2025-02-27",
    "openai:gpt-4o",
    "openai:gpt-4o-2024-05-13",
    "openai:gpt-4o-2024-08-06",
    "openai:gpt-4o-2024-11-20",
    "openai:gpt-4o-audio-preview",
    "openai:gpt-4o-audio-preview-2024-10-01",
    "openai:gpt-4o-audio-preview-2024-12-17",
    "openai:gpt-4o-mini",
    "openai:gpt-4o-mini-2024-07-18",
    "openai:gpt-4o-mini-audio-preview",
    "openai:gpt-4o-mini-audio-preview-2024-12-17",
    "openai:o1",
    "openai:o1-2024-12-17",
    "openai:o1-mini",
    "openai:o1-mini-2024-09-12",
    "openai:o1-preview",
    "openai:o1-preview-2024-09-12",
    "openai:o3-mini",
    "openai:o3-mini-2025-01-31",
    "test",
]

Known model names that can be used with the model parameter of Agent.

KnownModelName is provided as a concise way to specify a model.

ModelRequestParameters dataclass

Configuration for an agent's request to a model, specifically related to tools and result handling.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
221
222
223
224
225
226
227
@dataclass
class ModelRequestParameters:
    """Configuration for an agent's request to a model, specifically related to tools and result handling."""

    function_tools: list[ToolDefinition]
    allow_text_result: bool
    result_tools: list[ToolDefinition]

Model

Bases: ABC

Abstract class for a model.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class Model(ABC):
    """Abstract class for a model."""

    @abstractmethod
    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, Usage]:
        """Make a request to the model."""
        raise NotImplementedError()

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        """Make a request to the model and return a streaming response."""
        # This method is not required, but you need to implement it if you want to support streamed responses
        raise NotImplementedError(f'Streamed requests not supported by this {self.__class__.__name__}')
        # yield is required to make this a generator for type checking
        # noinspection PyUnreachableCode
        yield  # pragma: no cover

    @property
    @abstractmethod
    def model_name(self) -> str:
        """The model name."""
        raise NotImplementedError()

    @property
    @abstractmethod
    def system(self) -> str:
        """The system / model provider, ex: openai.

        Use to populate the `gen_ai.system` OpenTelemetry semantic convention attribute,
        so should use well-known values listed in
        https://opentelemetry.io/docs/specs/semconv/attributes-registry/gen-ai/#gen-ai-system
        when applicable.
        """
        raise NotImplementedError()

    @property
    def base_url(self) -> str | None:
        """The base URL for the provider API, if available."""
        return None

request abstractmethod async

request(
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, Usage]

Make a request to the model.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
233
234
235
236
237
238
239
240
241
@abstractmethod
async def request(
    self,
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> tuple[ModelResponse, Usage]:
    """Make a request to the model."""
    raise NotImplementedError()

request_stream async

request_stream(
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]

Make a request to the model and return a streaming response.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
243
244
245
246
247
248
249
250
251
252
253
254
255
@asynccontextmanager
async def request_stream(
    self,
    messages: list[ModelMessage],
    model_settings: ModelSettings | None,
    model_request_parameters: ModelRequestParameters,
) -> AsyncIterator[StreamedResponse]:
    """Make a request to the model and return a streaming response."""
    # This method is not required, but you need to implement it if you want to support streamed responses
    raise NotImplementedError(f'Streamed requests not supported by this {self.__class__.__name__}')
    # yield is required to make this a generator for type checking
    # noinspection PyUnreachableCode
    yield  # pragma: no cover

model_name abstractmethod property

model_name: str

The model name.

system abstractmethod property

system: str

The system / model provider, ex: openai.

Use to populate the gen_ai.system OpenTelemetry semantic convention attribute, so should use well-known values listed in https://opentelemetry.io/docs/specs/semconv/attributes-registry/gen-ai/#gen-ai-system when applicable.

base_url property

base_url: str | None

The base URL for the provider API, if available.

StreamedResponse dataclass

Bases: ABC

Streamed response from an LLM when calling a tool.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
@dataclass
class StreamedResponse(ABC):
    """Streamed response from an LLM when calling a tool."""

    _parts_manager: ModelResponsePartsManager = field(default_factory=ModelResponsePartsManager, init=False)
    _event_iterator: AsyncIterator[ModelResponseStreamEvent] | None = field(default=None, init=False)
    _usage: Usage = field(default_factory=Usage, init=False)

    def __aiter__(self) -> AsyncIterator[ModelResponseStreamEvent]:
        """Stream the response as an async iterable of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s."""
        if self._event_iterator is None:
            self._event_iterator = self._get_event_iterator()
        return self._event_iterator

    @abstractmethod
    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        """Return an async iterator of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s.

        This method should be implemented by subclasses to translate the vendor-specific stream of events into
        pydantic_ai-format events.

        It should use the `_parts_manager` to handle deltas, and should update the `_usage` attributes as it goes.
        """
        raise NotImplementedError()
        # noinspection PyUnreachableCode
        yield

    def get(self) -> ModelResponse:
        """Build a [`ModelResponse`][pydantic_ai.messages.ModelResponse] from the data received from the stream so far."""
        return ModelResponse(
            parts=self._parts_manager.get_parts(), model_name=self.model_name, timestamp=self.timestamp
        )

    def usage(self) -> Usage:
        """Get the usage of the response so far. This will not be the final usage until the stream is exhausted."""
        return self._usage

    @property
    @abstractmethod
    def model_name(self) -> str:
        """Get the model name of the response."""
        raise NotImplementedError()

    @property
    @abstractmethod
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        raise NotImplementedError()

__aiter__

Stream the response as an async iterable of ModelResponseStreamEvents.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
289
290
291
292
293
def __aiter__(self) -> AsyncIterator[ModelResponseStreamEvent]:
    """Stream the response as an async iterable of [`ModelResponseStreamEvent`][pydantic_ai.messages.ModelResponseStreamEvent]s."""
    if self._event_iterator is None:
        self._event_iterator = self._get_event_iterator()
    return self._event_iterator

get

get() -> ModelResponse

Build a ModelResponse from the data received from the stream so far.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
308
309
310
311
312
def get(self) -> ModelResponse:
    """Build a [`ModelResponse`][pydantic_ai.messages.ModelResponse] from the data received from the stream so far."""
    return ModelResponse(
        parts=self._parts_manager.get_parts(), model_name=self.model_name, timestamp=self.timestamp
    )

usage

usage() -> Usage

Get the usage of the response so far. This will not be the final usage until the stream is exhausted.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
314
315
316
def usage(self) -> Usage:
    """Get the usage of the response so far. This will not be the final usage until the stream is exhausted."""
    return self._usage

model_name abstractmethod property

model_name: str

Get the model name of the response.

timestamp abstractmethod property

timestamp: datetime

Get the timestamp of the response.

ALLOW_MODEL_REQUESTS module-attribute

ALLOW_MODEL_REQUESTS = True

Whether to allow requests to models.

This global setting allows you to disable request to most models, e.g. to make sure you don't accidentally make costly requests to a model during tests.

The testing models TestModel and FunctionModel are no affected by this setting.

check_allow_model_requests

check_allow_model_requests() -> None

Check if model requests are allowed.

If you're defining your own models that have costs or latency associated with their use, you should call this in Model.request and Model.request_stream.

Raises:

Type Description
RuntimeError

If model requests are not allowed.

Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
342
343
344
345
346
347
348
349
350
351
352
def check_allow_model_requests() -> None:
    """Check if model requests are allowed.

    If you're defining your own models that have costs or latency associated with their use, you should call this in
    [`Model.request`][pydantic_ai.models.Model.request] and [`Model.request_stream`][pydantic_ai.models.Model.request_stream].

    Raises:
        RuntimeError: If model requests are not allowed.
    """
    if not ALLOW_MODEL_REQUESTS:
        raise RuntimeError('Model requests are not allowed, since ALLOW_MODEL_REQUESTS is False')

override_allow_model_requests

override_allow_model_requests(
    allow_model_requests: bool,
) -> Iterator[None]

Context manager to temporarily override ALLOW_MODEL_REQUESTS.

Parameters:

Name Type Description Default
allow_model_requests bool

Whether to allow model requests within the context.

required
Source code in pydantic_ai_slim/pydantic_ai/models/__init__.py
355
356
357
358
359
360
361
362
363
364
365
366
367
368
@contextmanager
def override_allow_model_requests(allow_model_requests: bool) -> Iterator[None]:
    """Context manager to temporarily override [`ALLOW_MODEL_REQUESTS`][pydantic_ai.models.ALLOW_MODEL_REQUESTS].

    Args:
        allow_model_requests: Whether to allow model requests within the context.
    """
    global ALLOW_MODEL_REQUESTS
    old_value = ALLOW_MODEL_REQUESTS
    ALLOW_MODEL_REQUESTS = allow_model_requests  # pyright: ignore[reportConstantRedefinition]
    try:
        yield
    finally:
        ALLOW_MODEL_REQUESTS = old_value  # pyright: ignore[reportConstantRedefinition]