Skip to content

pydantic_ai.models.test

Utility model for quickly testing apps built with PydanticAI.

Here's a minimal example:

test_model_usage.py
from pydantic_ai import Agent
from pydantic_ai.models.test import TestModel

my_agent = Agent('openai:gpt-4o', system_prompt='...')


async def test_my_agent():
    """Unit test for my_agent, to be run by pytest."""
    m = TestModel()
    with my_agent.override(model=m):
        result = await my_agent.run('Testing my agent...')
        assert result.data == 'success (no tool calls)'
    assert m.last_model_request_parameters.function_tools == []

See Unit testing with TestModel for detailed documentation.

TestModel dataclass

Bases: Model

A model specifically for testing purposes.

This will (by default) call all tools in the agent, then return a tool response if possible, otherwise a plain response.

How useful this model is will vary significantly.

Apart from __init__ derived by the dataclass decorator, all methods are private or match those of the base class.

Source code in pydantic_ai_slim/pydantic_ai/models/test.py
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
@dataclass
class TestModel(Model):
    """A model specifically for testing purposes.

    This will (by default) call all tools in the agent, then return a tool response if possible,
    otherwise a plain response.

    How useful this model is will vary significantly.

    Apart from `__init__` derived by the `dataclass` decorator, all methods are private or match those
    of the base class.
    """

    # NOTE: Avoid test discovery by pytest.
    __test__ = False

    call_tools: list[str] | Literal['all'] = 'all'
    """List of tools to call. If `'all'`, all tools will be called."""
    custom_result_text: str | None = None
    """If set, this text is returned as the final result."""
    custom_result_args: Any | None = None
    """If set, these args will be passed to the result tool."""
    seed: int = 0
    """Seed for generating random data."""
    last_model_request_parameters: ModelRequestParameters | None = field(default=None, init=False)
    """The last ModelRequestParameters passed to the model in a request.

    The ModelRequestParameters contains information about the function and result tools available during request handling.

    This is set when a request is made, so will reflect the function tools from the last step of the last run.
    """
    _model_name: str = field(default='test', repr=False)
    _system: str = field(default='test', repr=False)

    async def request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> tuple[ModelResponse, Usage]:
        self.last_model_request_parameters = model_request_parameters

        model_response = self._request(messages, model_settings, model_request_parameters)
        usage = _estimate_usage([*messages, model_response])
        return model_response, usage

    @asynccontextmanager
    async def request_stream(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> AsyncIterator[StreamedResponse]:
        self.last_model_request_parameters = model_request_parameters

        model_response = self._request(messages, model_settings, model_request_parameters)
        yield TestStreamedResponse(
            _model_name=self._model_name, _structured_response=model_response, _messages=messages
        )

    @property
    def model_name(self) -> str:
        """The model name."""
        return self._model_name

    @property
    def system(self) -> str:
        """The system / model provider."""
        return self._system

    def gen_tool_args(self, tool_def: ToolDefinition) -> Any:
        return _JsonSchemaTestData(tool_def.parameters_json_schema, self.seed).generate()

    def _get_tool_calls(self, model_request_parameters: ModelRequestParameters) -> list[tuple[str, ToolDefinition]]:
        if self.call_tools == 'all':
            return [(r.name, r) for r in model_request_parameters.function_tools]
        else:
            function_tools_lookup = {t.name: t for t in model_request_parameters.function_tools}
            tools_to_call = (function_tools_lookup[name] for name in self.call_tools)
            return [(r.name, r) for r in tools_to_call]

    def _get_result(self, model_request_parameters: ModelRequestParameters) -> _TextResult | _FunctionToolResult:
        if self.custom_result_text is not None:
            assert model_request_parameters.allow_text_result, (
                'Plain response not allowed, but `custom_result_text` is set.'
            )
            assert self.custom_result_args is None, 'Cannot set both `custom_result_text` and `custom_result_args`.'
            return _TextResult(self.custom_result_text)
        elif self.custom_result_args is not None:
            assert model_request_parameters.result_tools is not None, (
                'No result tools provided, but `custom_result_args` is set.'
            )
            result_tool = model_request_parameters.result_tools[0]

            if k := result_tool.outer_typed_dict_key:
                return _FunctionToolResult({k: self.custom_result_args})
            else:
                return _FunctionToolResult(self.custom_result_args)
        elif model_request_parameters.allow_text_result:
            return _TextResult(None)
        elif model_request_parameters.result_tools:
            return _FunctionToolResult(None)
        else:
            return _TextResult(None)

    def _request(
        self,
        messages: list[ModelMessage],
        model_settings: ModelSettings | None,
        model_request_parameters: ModelRequestParameters,
    ) -> ModelResponse:
        tool_calls = self._get_tool_calls(model_request_parameters)
        result = self._get_result(model_request_parameters)
        result_tools = model_request_parameters.result_tools

        # if there are tools, the first thing we want to do is call all of them
        if tool_calls and not any(isinstance(m, ModelResponse) for m in messages):
            return ModelResponse(
                parts=[ToolCallPart(name, self.gen_tool_args(args)) for name, args in tool_calls],
                model_name=self._model_name,
            )

        if messages:
            last_message = messages[-1]
            assert isinstance(last_message, ModelRequest), 'Expected last message to be a `ModelRequest`.'

            # check if there are any retry prompts, if so retry them
            new_retry_names = {p.tool_name for p in last_message.parts if isinstance(p, RetryPromptPart)}
            if new_retry_names:
                # Handle retries for both function tools and result tools
                # Check function tools first
                retry_parts: list[ModelResponsePart] = [
                    ToolCallPart(name, self.gen_tool_args(args)) for name, args in tool_calls if name in new_retry_names
                ]
                # Check result tools
                if result_tools:
                    retry_parts.extend(
                        [
                            ToolCallPart(
                                tool.name,
                                result.value
                                if isinstance(result, _FunctionToolResult) and result.value is not None
                                else self.gen_tool_args(tool),
                            )
                            for tool in result_tools
                            if tool.name in new_retry_names
                        ]
                    )
                return ModelResponse(parts=retry_parts, model_name=self._model_name)

        if isinstance(result, _TextResult):
            if (response_text := result.value) is None:
                # build up details of tool responses
                output: dict[str, Any] = {}
                for message in messages:
                    if isinstance(message, ModelRequest):
                        for part in message.parts:
                            if isinstance(part, ToolReturnPart):
                                output[part.tool_name] = part.content
                if output:
                    return ModelResponse(
                        parts=[TextPart(pydantic_core.to_json(output).decode())], model_name=self._model_name
                    )
                else:
                    return ModelResponse(parts=[TextPart('success (no tool calls)')], model_name=self._model_name)
            else:
                return ModelResponse(parts=[TextPart(response_text)], model_name=self._model_name)
        else:
            assert result_tools, 'No result tools provided'
            custom_result_args = result.value
            result_tool = result_tools[self.seed % len(result_tools)]
            if custom_result_args is not None:
                return ModelResponse(
                    parts=[ToolCallPart(result_tool.name, custom_result_args)], model_name=self._model_name
                )
            else:
                response_args = self.gen_tool_args(result_tool)
                return ModelResponse(parts=[ToolCallPart(result_tool.name, response_args)], model_name=self._model_name)

call_tools class-attribute instance-attribute

call_tools: list[str] | Literal['all'] = 'all'

List of tools to call. If 'all', all tools will be called.

custom_result_text class-attribute instance-attribute

custom_result_text: str | None = None

If set, this text is returned as the final result.

custom_result_args class-attribute instance-attribute

custom_result_args: Any | None = None

If set, these args will be passed to the result tool.

seed class-attribute instance-attribute

seed: int = 0

Seed for generating random data.

last_model_request_parameters class-attribute instance-attribute

last_model_request_parameters: (
    ModelRequestParameters | None
) = field(default=None, init=False)

The last ModelRequestParameters passed to the model in a request.

The ModelRequestParameters contains information about the function and result tools available during request handling.

This is set when a request is made, so will reflect the function tools from the last step of the last run.

model_name property

model_name: str

The model name.

system property

system: str

The system / model provider.

TestStreamedResponse dataclass

Bases: StreamedResponse

A structured response that streams test data.

Source code in pydantic_ai_slim/pydantic_ai/models/test.py
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
@dataclass
class TestStreamedResponse(StreamedResponse):
    """A structured response that streams test data."""

    _model_name: str
    _structured_response: ModelResponse
    _messages: InitVar[Iterable[ModelMessage]]
    _timestamp: datetime = field(default_factory=_utils.now_utc, init=False)

    def __post_init__(self, _messages: Iterable[ModelMessage]):
        self._usage = _estimate_usage(_messages)

    async def _get_event_iterator(self) -> AsyncIterator[ModelResponseStreamEvent]:
        for i, part in enumerate(self._structured_response.parts):
            if isinstance(part, TextPart):
                text = part.content
                *words, last_word = text.split(' ')
                words = [f'{word} ' for word in words]
                words.append(last_word)
                if len(words) == 1 and len(text) > 2:
                    mid = len(text) // 2
                    words = [text[:mid], text[mid:]]
                self._usage += _get_string_usage('')
                yield self._parts_manager.handle_text_delta(vendor_part_id=i, content='')
                for word in words:
                    self._usage += _get_string_usage(word)
                    yield self._parts_manager.handle_text_delta(vendor_part_id=i, content=word)
            else:
                yield self._parts_manager.handle_tool_call_part(
                    vendor_part_id=i, tool_name=part.tool_name, args=part.args, tool_call_id=part.tool_call_id
                )

    @property
    def model_name(self) -> str:
        """Get the model name of the response."""
        return self._model_name

    @property
    def timestamp(self) -> datetime:
        """Get the timestamp of the response."""
        return self._timestamp

model_name property

model_name: str

Get the model name of the response.

timestamp property

timestamp: datetime

Get the timestamp of the response.