Messages and chat history
PydanticAI provides access to messages exchanged during an agent run. These messages can be used both to continue a coherent conversation, and to understand how an agent performed.
Accessing Messages from Results
After running an agent, you can access the messages exchanged during that run from the result
object.
Both RunResult
(returned by Agent.run
, Agent.run_sync
)
and StreamedRunResult
(returned by Agent.run_stream
) have the following methods:
all_messages()
: returns all messages, including messages from prior runs. There's also a variant that returns JSON bytes,all_messages_json()
.new_messages()
: returns only the messages from the current run. There's also a variant that returns JSON bytes,new_messages_json()
.
StreamedRunResult and complete messages
On StreamedRunResult
, the messages returned from these methods will only include the final result message once the stream has finished.
E.g. you've awaited one of the following coroutines:
StreamedRunResult.stream()
StreamedRunResult.stream_text()
StreamedRunResult.stream_structured()
StreamedRunResult.get_data()
Note: The final result message will NOT be added to result messages if you use .stream_text(delta=True)
since in this case the result content is never built as one string.
Example of accessing methods on a RunResult
:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')
result = agent.run_sync('Tell me a joke.')
print(result.data)
#> Did you hear about the toothpaste scandal? They called it Colgate.
# all messages from the run
print(result.all_messages())
"""
[
ModelRequest(
parts=[
SystemPromptPart(
content='Be a helpful assistant.',
timestamp=datetime.datetime(...),
dynamic_ref=None,
part_kind='system-prompt',
),
UserPromptPart(
content='Tell me a joke.',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
),
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='Did you hear about the toothpaste scandal? They called it Colgate.',
part_kind='text',
)
],
model_name='gpt-4o',
timestamp=datetime.datetime(...),
kind='response',
),
]
"""
Example of accessing methods on a StreamedRunResult
:
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')
async def main():
async with agent.run_stream('Tell me a joke.') as result:
# incomplete messages before the stream finishes
print(result.all_messages())
"""
[
ModelRequest(
parts=[
SystemPromptPart(
content='Be a helpful assistant.',
timestamp=datetime.datetime(...),
dynamic_ref=None,
part_kind='system-prompt',
),
UserPromptPart(
content='Tell me a joke.',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
),
],
kind='request',
)
]
"""
async for text in result.stream_text():
print(text)
#> Did you hear
#> Did you hear about the toothpaste
#> Did you hear about the toothpaste scandal? They called
#> Did you hear about the toothpaste scandal? They called it Colgate.
# complete messages once the stream finishes
print(result.all_messages())
"""
[
ModelRequest(
parts=[
SystemPromptPart(
content='Be a helpful assistant.',
timestamp=datetime.datetime(...),
dynamic_ref=None,
part_kind='system-prompt',
),
UserPromptPart(
content='Tell me a joke.',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
),
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='Did you hear about the toothpaste scandal? They called it Colgate.',
part_kind='text',
)
],
model_name='gpt-4o',
timestamp=datetime.datetime(...),
kind='response',
),
]
"""
asyncio.run(main())
to run main
)
Using Messages as Input for Further Agent Runs
The primary use of message histories in PydanticAI is to maintain context across multiple agent runs.
To use existing messages in a run, pass them to the message_history
parameter of
Agent.run
, Agent.run_sync
or
Agent.run_stream
.
If message_history
is set and not empty, a new system prompt is not generated — we assume the existing message history includes a system prompt.
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')
result1 = agent.run_sync('Tell me a joke.')
print(result1.data)
#> Did you hear about the toothpaste scandal? They called it Colgate.
result2 = agent.run_sync('Explain?', message_history=result1.new_messages())
print(result2.data)
#> This is an excellent joke invented by Samuel Colvin, it needs no explanation.
print(result2.all_messages())
"""
[
ModelRequest(
parts=[
SystemPromptPart(
content='Be a helpful assistant.',
timestamp=datetime.datetime(...),
dynamic_ref=None,
part_kind='system-prompt',
),
UserPromptPart(
content='Tell me a joke.',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
),
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='Did you hear about the toothpaste scandal? They called it Colgate.',
part_kind='text',
)
],
model_name='gpt-4o',
timestamp=datetime.datetime(...),
kind='response',
),
ModelRequest(
parts=[
UserPromptPart(
content='Explain?',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
)
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='This is an excellent joke invented by Samuel Colvin, it needs no explanation.',
part_kind='text',
)
],
model_name='gpt-4o',
timestamp=datetime.datetime(...),
kind='response',
),
]
"""
Storing and loading messages (to JSON)
While maintaining conversation state in memory is enough for many applications, often times you may want to store the messages history of an agent run on disk or in a database. This might be for evals, for sharing data between Python and JavaScript/TypeScript, or any number of other use cases.
The intended way to do this is using a TypeAdapter
.
We export ModelMessagesTypeAdapter
that can be used for this, or you can create your own.
Here's an example showing how:
from pydantic_core import to_jsonable_python
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessagesTypeAdapter # (1)!
agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')
result1 = agent.run_sync('Tell me a joke.')
history_step_1 = result1.all_messages()
as_python_objects = to_jsonable_python(history_step_1) # (2)!
same_history_as_step_1 = ModelMessagesTypeAdapter.validate_python(as_python_objects)
result2 = agent.run_sync( # (3)!
'Tell me a different joke.', message_history=same_history_as_step_1
)
- Alternatively, you can create a
TypeAdapter
from scratch:from pydantic import TypeAdapter from pydantic_ai.messages import ModelMessage ModelMessagesTypeAdapter = TypeAdapter(list[ModelMessage])
- Alternatively you can serialize to/from JSON directly:
from pydantic_core import to_json ... as_json_objects = to_json(history_step_1) same_history_as_step_1 = ModelMessagesTypeAdapter.validate_json(as_json_objects)
- You can now continue the conversation with history
same_history_as_step_1
despite creating a new agent run.
(This example is complete, it can be run "as is")
Other ways of using messages
Since messages are defined by simple dataclasses, you can manually create and manipulate, e.g. for testing.
The message format is independent of the model used, so you can use messages in different agents, or the same agent with different models.
In the example below, we reuse the message from the first agent run, which uses the openai:gpt-4o
model, in a second agent run using the google-gla:gemini-1.5-pro
model.
from pydantic_ai import Agent
agent = Agent('openai:gpt-4o', system_prompt='Be a helpful assistant.')
result1 = agent.run_sync('Tell me a joke.')
print(result1.data)
#> Did you hear about the toothpaste scandal? They called it Colgate.
result2 = agent.run_sync(
'Explain?',
model='google-gla:gemini-1.5-pro',
message_history=result1.new_messages(),
)
print(result2.data)
#> This is an excellent joke invented by Samuel Colvin, it needs no explanation.
print(result2.all_messages())
"""
[
ModelRequest(
parts=[
SystemPromptPart(
content='Be a helpful assistant.',
timestamp=datetime.datetime(...),
dynamic_ref=None,
part_kind='system-prompt',
),
UserPromptPart(
content='Tell me a joke.',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
),
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='Did you hear about the toothpaste scandal? They called it Colgate.',
part_kind='text',
)
],
model_name='gpt-4o',
timestamp=datetime.datetime(...),
kind='response',
),
ModelRequest(
parts=[
UserPromptPart(
content='Explain?',
timestamp=datetime.datetime(...),
part_kind='user-prompt',
)
],
kind='request',
),
ModelResponse(
parts=[
TextPart(
content='This is an excellent joke invented by Samuel Colvin, it needs no explanation.',
part_kind='text',
)
],
model_name='gemini-1.5-pro',
timestamp=datetime.datetime(...),
kind='response',
),
]
"""
Examples
For a more complete example of using messages in conversations, see the chat app example.